

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

Faculty of Computing and Informatics

Department of Computer Science

QUALIFICATION: Bachelor of Computer Science, Bachelor of Informatics		
QUALIFICATION CODE: 07BACS, 07BAIF	LEVEL: NQF 6	
COURSE: Data Structures and Algorithms	COURSE CODE: DSA610S	
DATE: July 2019	SESSION: 2	
DURATION: 3 Hours	MARKS: 100	

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER		
EXAMINER(S)	MR MIKE ABIA	
	DR CAMERON MACRAE	
	MR JEREMIA LUMBASI	
	MR HERMAN KANDJIMI	
	MR VEERABHADRAM PADURI	
	MR STEVEN TJIRASO	
MODERATOR	PROF. JOSE QUENUM	

THIS QUESTION PAPER CONSISTS OF 4 PAGES

(Excluding this front page)

INSTRUCTIONS

- 1. Respond to ALL problems in sections A, B and C.
- 2. Use the examination script booklet provided.
- 3. Each section must be started on a new page.
- 4. NUST examination rules and regulations apply.
- 5. Follow instructions in the examination script booklet.
- 6. Write clearly and neatly.

SECTION A: Multiple Choice

[20 marks]

- Respond to ALL problems in this section.
- Select the best option in each of the problems in this section.
- Your responses must be written in the answer booklet provided.
- Marks to each question or part of question are given in [].

Problem A1

Which one of the below mentioned data structures is a linear data structure?

- A. Binary tree
- B. Binary search tree
- C. Graph
- D. Queue

[2 marks]

Problem A2

Which of the following statements is true?

Statement A: A binary tree is always a binary search tree.

Statement B: A binary search tree is a graph.

- A. Statement A is true, and Statement B is false.
- B. Statement A is false, and statement B is true.
- C. Both Statement A and Statement B are true.
- D. Both Statement A and Statement B are false.

[2 marks]

Problem A3

Which of the following algorithms makes use of the divide and conquer approach to solving a problem?

- A. Binary search tree
- B. Binary search
- C. Program
- D. Graph

[2 marks]

Problem A4

Which of the following operations can be performed on a graph?

- A. Insertion-adding an element to the graph
- B. Deletion-removing an element from the graph
- C. Search-seek for an element in a given graph
- D. All of the above

[2 marks]

Problem A5

An algorithm can be represented using the following.

- A. Pseudo code
- B. Flow chart
- C. None of the above
- D. Both A and B

[2 marks]

Problem A6

If the number of records to be sorted is small, then _____ sorting can be efficient.

- A. Binary
- B. Insertion
- C. Selection
- D. Bubble

[2 marks]

Problem A7

Given a binary search tree, which traversal type would print the values in the nodes in sorted order?

- A. Pre-order
- B. Post-order
- C. In-order
- D. level order

[2 marks]

Problem A8

After deleting the key 77, which key replaces it if the tree is to maintain its binary search property?

- A. 41
- B. 47
- C. 80
- D. 52

[2 marks]

Problem A9

If T is a binary search tree storing 128 elements. What is the biggest possible height of T?

- A. 125 or 126
- B. 127 or 128
- C. 129 or 130
- D. 131 or 132

[2 marks]

Problem A10

Bubble sort is similar to selection sort in the sense that

- A. Both algorithms compare every element of the list with its predecessor only if the predecessor of the given element exists.
- B. Both algorithms sort the list by pushing the biggest or the smallest element to the extreme end of the list.
- C. Both algorithms are used in the binary search algorithm.
- D. None of the above answers.

[2 marks]

SECTION B

• Respond to ALL problems in this section

- Clearly mark each of the following assertions as true (T) or false (F)
- Your responses must be written in the answer booklet provided.
- Marks to each question or part of question are given in [].

Problem B1

A doubly-linked list is a linear data structure.

[2 marks]

[20 marks]

Problem B2

It is not sensible to discuss depth-first and breath-first searches in linear data structures. [2 marks]

Problem B3

A stack follows a LIFO (last-in-first-out) rule.

[2 marks]

Problem B4

Push and pop operations are associated with queue data structure.

[2 marks]

Problem B5

Probabilistic complexity represents the probability of an algorithm processing input in a specific time. [2 marks]

Problem B6

An algorithm is needed for every useful computer program.

[2 marks]

Problem B7

Arrays can store homogeneous data elements.

[2 marks]

Problem B8

Big-O and Big-O (Big-Theta) are both asymptotic notations.

[2 marks]

Problem B9

A queue is a first-in-last-out (FILO) data structure.

[2 marks]

Problem B10

Singly-linked lists and doubly-linked lists have no root node.

[2 marks]

SECTION C [60 marks]

- Respond to ALL problems in this section.
- Your responses must be written in the answer booklet provided.
- Marks to each question or part of question are given in [].

Problem C1 [20 marks]

The following sequence of numbers needs to be sorted in descending order: 17,14,11,15,18,12,10,13,9,16. Copy and complete the table below.

	Selection Sort	
Sequence after 1 swap		
Sequence after 2 swaps		
Sequence after 3 swaps		
Sequence after 4 swaps		

Problem C2 [10 marks]

Binary search was used to search for an element in a list of elements. The element searched was found at position 3 after visiting 3 elements (including element at position 3). Assume the position numbers start at position 1.

- a. Give the number of elements that were in the list if no rounding was necessary in the calculations. [3 marks]
- b. Give the number of elements that were in the list if rounding down was necessary three times in the calculations. [7 marks]

Problem C3 [30 marks]

Given the following sequence of keys: 63 28 51 53 80 35 57 61 42 81;

- a. Construct a binary search tree (BST), start with the first key in the sequence (63) as the root and proceed from left to right of the sequence. [10 marks]
- b. Give the pre-order traversal of the BST. Your answer should be a sequence of 10 integers, separated by whitespace. [10 marks]
- c. Give the in-order traversal of the BST. Your answer should be a sequence of 10 integers, separated by whitespace. [10 marks]

****End of Paper****